National marine sanctuary offices and visitor centers closed to the public; waters remain open

NOAA's national marine sanctuary offices and visitor centers are currently closed to the public, and in accordance with Executive Order 13991 - Protecting the Federal Workforce and Requiring Mask Wearing, all individuals in NOAA-managed areas are required to follow Centers for Disease Control and Prevention (CDC) guidance on mask-wearing and maintaining social distances. Sanctuary waters remain open for responsible use in accordance with CDC guidance, U.S. Coast Guard requirements, and local regulations. More information on the response from NOAA's Office of National Marine Sanctuaries can be found on

Skip to main content
Monterey Bay National Marine Sanctuary National Marine Sanctuaries Home Page National Oceanic and Atmospheric Administration Home Page

Research Technical Report

Chemical and Biological Impacts of Ocean Acidification Along the West Coast of North America

Feely, R.F., S.R. Alin, B. Carter, N. Bednaršek, B. Hales, F. Chan, T.M. Hill, B. Gaylord, E. Sanford, R.H. Byrne, C.L. Sabine, D. Greeley, L. Juranek (August 2016)

Estuarine, Coastal and Shelf Science 183:260-270


The continental shelf region off the west coast of North America is seasonally exposed to water with a low aragonite saturation state by coastal upwelling of CO₂-rich waters. To date, the spatial and temporal distribution of anthropogenic CO₂ (Canth) within the CO₂-rich waters is largely unknown. Here we adapt the multiple linear regression approach to utilize the GO-SHIP Repeat Hydrography data from the northeast Pacific to establish an annually updated relationship between Canth and potential density. This relationship was then used with the NOAA Ocean Acidification Program West Coast Ocean Acidification (WCOA) cruise data sets from 2007, 2011, 2012, and 2013 to determine the spatial variations of Canth in the upwelled water. Our results show large spatial differences in Canth in surface waters along the coast, with the lowest values (37—55 μmol kg−1) in strong upwelling regions off southern Oregon and northern California and higher values (51—63 μmol kg−1) to the north and south of this region. Coastal dissolved inorganic carbon concentrations are also elevated due to a natural remineralized component (Cbio), which represents carbon accumulated through net respiration in the seawater that has not yet degassed to the atmosphere. Average surface Canth is almost twice the surface remineralized component. In contrast, Canth is only about one third and one fifth of the remineralized component at 50 m and 100 m depth, respectively. Uptake of Canth has caused the aragonite saturation horizon to shoal by approximately 30—50 m since the preindustrial period so that undersaturated waters are well within the regions of the continental shelf that affect the shell dissolution of living pteropods. Our data show that the most severe biological impacts occur in the nearshore waters, where corrosive waters are closest to the surface. Since the pre-industrial times, pteropod shell dissolution has, on average, increased approximately 19—26% in both nearshore and offshore waters.