National marine sanctuary offices and visitor centers closed to the public; waters remain open

NOAA's national marine sanctuary offices and visitor centers are currently closed to the public, and in accordance with Executive Order 13991 - Protecting the Federal Workforce and Requiring Mask Wearing, all individuals in NOAA-managed areas are required to follow Centers for Disease Control and Prevention (CDC) guidance on mask-wearing and maintaining social distances. Sanctuary waters remain open for responsible use in accordance with CDC guidance, U.S. Coast Guard requirements, and local regulations. More information on the response from NOAA's Office of National Marine Sanctuaries can be found on

Skip to main content
Monterey Bay National Marine Sanctuary National Marine Sanctuaries Home Page National Oceanic and Atmospheric Administration Home Page

Research Technical Report

Coast-wide Recruitment Dynamics of Olympia Oysters Reveal Limited Synchrony and Multiple Predictors of Failure

Wasson, W., B.B. Hughes, J.S. Berriman, A.L. Chang, A.K. Deck, P.A. Dinnel, C. Endris, M. Espinoza, S. Dudas, M.C. Ferner, E.D. Grosholz, D. Kimbro, J.L. Ruesink, A.C. Trimble, D. Vander Schaaf, C.J. Zabin, and D.C. Zacherel (December 2016)

Ecology 97(12):3503-3516; DOI: 10.1002/ecy.1602


Recruitment of new propagules into a population can be a critical determinant of adult density. We examined recruitment dynamics in the Olympia oyster (Ostrea lurida), a species occurring almost entirely in estuaries. We investigated spatial scales of interannual synchrony across 37 sites in eight estuaries along 2,500 km of Pacific North American coastline, predicting that high vs. low recruitment years would coincide among neighboring estuaries due to shared exposure to regional oceanographic factors. Such synchrony in recruitment has been found for many marine species and some migratory estuarine species, but has never been examined across estuaries in a species that can complete its entire life cycle within the same estuary. To inform ongoing restoration efforts for Olympia oysters, which have declined in abundance in many estuaries, we also investigated predictors of recruitment failure. We found striking contrasts in absolute recruitment rate and frequency of recruitment failure among sites, estuaries, and years. Although we found a positive relationship between upwelling and recruitment, there was little evidence of synchrony in recruitment among estuaries along the coast, and only limited synchrony of sites within estuaries, suggesting recruitment rates are affected more strongly by local dynamics within estuaries than by regional oceanographic factors operating at scales encompassing multiple estuaries. This highlights the importance of local wetland and watershed management for the demography of oysters, and perhaps other species that can complete their entire life cycle within estuaries. Estuaries with more homogeneous environmental conditions had greater synchrony among sites, and this led to the potential for estuary-wide failure when all sites had no recruitment in the same year. Environmental heterogeneity within estuaries may thus buffer against estuary-wide recruitment failure, analogous to the portfolio effect for diversity. Recruitment failure was correlated with lower summer water temperature, higher winter salinity, and shorter residence time: all indicators of stronger marine influence on estuaries. Recruitment failure was also more common in estuaries with limited networks of nearby adult oysters. Large existing oyster networks are thus of high conservation value, while estuaries that lack them would benefit from restoration efforts to increase the extent and connectivity of sites supporting oysters.